Course Content
Probability Distributions
Probability Distribution – Binomial, Poisson, Normal, and Exponential
0/3
Facility Location and Layout
Site Selection and Analysis, Layout Design and Process
0/3
Probability Distribution – Binomial, Poisson, Normal, and Exponential
Probability Distribution – Binomial, Poisson, Normal, and Exponential
0/4
Data Collection & Questionnaire Design
Data Collection & Questionnaire Design
Sampling: Concept, Process, and Techniques
Sampling: Concept, Process, and Techniques
0/2
Hypothesis Testing: Procedure
Hypothesis Testing: Procedure
0/2
T, Z, F, Chi-square tests
T, Z, F, Chi-square tests
0/2
Operations Management: Role and Scope
Operations Management: Role and Scope
0/1
Facility Location and Layout: Site Selection and Analysis, Layout Design and Process
Facility Location and Layout: Site Selection and Analysis, Layout Design and Process
Enterprise Resource Planning: ERP Modules, ERP Implementation
Enterprise Resource Planning: ERP Modules, ERP Implementation
Scheduling: Loading, Sequencing, and Monitoring
Scheduling: Loading, Sequencing, and Monitoring
0/4
Quality Management and Statistical Quality Control, Quality Circles, Total Quality Management – KAIZEN, Benchmarking, Six Sigma
Quality Management and Statistical Quality Control, Quality Circles, Total Quality Management – KAIZEN, Benchmarking, Six Sigma
0/3
ISO 9000 Series Standards
ISO 9000 Series Standards
Operation Research: Transportation, Queuing Decision Theory, PERT/CPM.
Operation Research: Transportation, Queuing Decision Theory, PERT/CPM.
0/6
Unit VIII: Business Statistics and Operations Management

To understand how population variance differs from sample variance, let’s break down what happens during the transition from population formulas to sample estimators:


μ is replaced by x̄

When calculating sample variance, we do not know the population mean (μ), so we estimate it using the sample mean (x̄). This is a key shift from population to sample statistics.


N is replaced by n – 1

In sample variance, the denominator becomes (n – 1) instead of N (population size). This adjustment is called Bessel’s correction, and it’s used to reduce bias when estimating population variance from a sample.